CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

LECTURE: DIVIDE & CONQUER – PART II

Instructor: Abdou Youssef

Divide & Conquer

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Apply the Divide & Conquer technique in more elaborate ways to design an algorithm for selecting elements of arbitrary ranks from an input array
- Carry out more involved time complexity analysis using induction

OUTLINE

- Third application of Divide and Conquer: Order Statistics (i.e., finding the kth smallest element in an array)
 - Basic D&C approach
 - More advanced D&C approach
 - Detailed time complexity analysis

DIVIDE & CONQUER -- TEMPLATE REMINDER --

Template divide&conquer (input I)

begin

if (size or value of input is small enough)
then

solve directly and **return**;

endif

<u>divide</u> input I into two or more parts $I_1, I_2, ...;$

- $S_1 \leftarrow divide\&conquer(I_1);$
- $S_2 \leftarrow divide\&conquer(I_2);$

Merge the subsolutions S₁, S₂,...into a global solution S;

end

.

DIVIDE & CONQUER -- THE ORDER STATISTICS PROBLEM --

- Problem:
 - **Input**: An arbitrary array A[1:n] of comparable data (i.e., has a comparator like \leq), and an integer k ($1 \leq k \leq n$)
 - **Output**: The *k*th smallest element of the array A
 - **Task**: Develop a D&C algorithm for finding the *k*th smallest element of input array A

THE ORDER STATISTICS PROBLEM -- SPECIAL CASES --

- If k = 1, the problem reduces to finding the minimum
- If k = n, the problem reduces to finding the maximum
- If $k = \frac{n}{2}$, the problem reduces to finding the median
- So, the Order Statistics problem is a generalization of finding the min/max/median problem (to find the k^{th} smallest for arbitrary k)

THE ORDER STATISTICS PROBLEM -- TIME COMPLEXITY CONSIDERATIONS (1) --

- Finding the min or max can be done in O(n) time
 - Scan the array left to right,

keeping track of the min/max so far

```
M=A[1];
for i=2 to n do
M=min(M,A[i]);
endfor;
return M;
```

- If $k = \frac{n}{2}$, the problem reduces to finding the median
 - Can it be done in O(n) time?
- In general, given that the min/max can be found in O(n), can we find the kth smallest in O(n) time no matter what k is?

THE ORDER STATISTICS PROBLEM -- TIME COMPLEXITY CONSIDERATIONS (2) --

- "Tempting" solution:
 - Sort the array; k^{th} smallest is in the k^{th} position of the sorted array
 - But that takes $O(n \log n)$ time.
- Given the higher $O(n \log n)$ cost of the sorting-based solution, is it reasonable to still hope for an O(n) algorithm?
- Well, the sorting-based solution does too much work: it can find not only the k^{th} smallest value for the given k, but also, the 1^{st} smallest, the 2^{nd} smallest, the 3^{rd} smallest,
- So, there is a possibility for an O(n) algorithm that finds the k^{th} smallest for just the given k

THE ORDER STATISTICS PROBLEM -- A FIRST D&C ATTEMPT --

```
function select(A[1:n],k) // returns the k^{th} smallest value of A
// it is assumed that 1 \le k \le n
begin
 if n==1 then // k must then be 1
      return (A[1]);
 endif
 r := partition(A[1:n],1,n); // same as in Quicksort
 case
   k=r: return(A[r]);
   k < r: return (select(A[1:r-1],k));
   k > r: return (select(A[r+1,n],k-r)); // why k-r, not k
 endcase
end
```

CYU

• Why k-r instead of k in the case k>r

TIME COMPLEXITY OF SELECT

- $T(n) = \max(\text{the times of the the 3 cases}) + \text{partition time}$
- $T(n) = \max(c, T(r-1), T(n-r)) + cn$
- $T(n) = \max(T(r-1), T(n-r)) + cn$
 - because $c \leq T(r-1)$ and T(n-r)
- The value r is unknown (can be any value in 1: n), so it is not possible to solve that recurrence relation. Instead, we can do one or both of the following:
 - Worst-case time complexity
 - Average-case time complexity

TIME COMPLEXITY OF SELECT -- WORST-CASE TIME COMPLEXITY --

- $T(n) = \max(T(r-1), T(n-r)) + cn$
- Worst case in D&C happens when the partitioned data is extremely <u>unbalanced</u>: (one part is empty, the other part full)

• In that case,
$$r = 1$$
, i.e., $r - 1 = 0$, or $r = n$

- Either way, we'll have: $T(n) = \max(T(0), T(n-1)) + cn$, that is,
- T(n) = T(n-1) + cn
- We saw that recurrence relation in Quicksort: $T(n) = O(n^2)$
- That is a shock: we were trying to beat $O(n \log n)$, but got $O(n^2)$

TIME COMPLEXITY OF SELECT -- AVERAGE-CASE TIME COMPLEXITY --

- $T(n) = \max(T(r-1), T(n-r)) + cn$
- Worst case is too expensive and too extreme
- Average-case is more representative
- We will not do it, but you are invited to carry out an averagecase time complexity analysis (like the one for Quicksort)
- You will discover that average-case time: $T_A(n) = O(n \log n)$
- Better, but not good enough

Remember, we're hoping for O(n)

THE ORDER STATISTICS PROBLEM -- A SECOND D&C ATTEMPT: QUICKSELECT --

• Same as 1st attempt, but we <u>"fix" partition</u> to <u>avoid **imbalance**</u>

```
function QuickSelect(A[1:n],k) // returns the k<sup>th</sup>smallest of A
// it is assumed that 1 \le k \le n
begin
 if n==1 then // k must then be 1
       return (A[1]);
 endif
 r := wise_partition(A[l:n]);
 case
   k=r: return (A[r]);
   k < r: return (select(A[1:r-1],k));
   k > r: return (select(A[r+1,n],k-r)); // why k-r, not k
 endcase
end
```

QUICKSELECT -- WISE_PARTITION --

- Same as 1st attempt, but we <u>"fix" partition</u> to <u>avoid **imbalance**</u>
- How: Pick a better partitioning element than A[1]. How?

QUICKSELECT -- WISE_PARTITION --

- Same as 1st attempt, but we <u>"fix" partition</u> to <u>avoid **imbalance**</u>
- How: Pick a better partitioning element than A[1]. How?

```
Function getWisePartitioningElement(A[1:n])
begin
int m=n/5; // integer division
Divide the array into groups of five each: A[1:5], A[6:10],...;
Sort each group; // Now A[1:5] is sorted, A[6:10] is sorted, ...
B[1:m] := the array of the middles of the sorted groups: B=A[3],A[8], A[13],...
//find the median of B, i.e., the m/2-th smallest of B
mm := Quickselect(B[1:m],m/2);
return (mm);
end
```

QUICKSELECT -- ALGORITHM --

function Qui	ckSelect(A[1:n],k)	// returns the <i>kthsmallest</i> of A					
// it is assumed that $1 \le k \le n$ begin if n==1 then // k must be 1 return (A[1]);		<pre>wise_partition(A[1:n]): mm=getWisePartitioningElement(A[1:n]) </pre>					
		 Swap A[1] with min r=partition(A[1:n]) return (r) 					
r := wise_partition(A[1:n]); case		<pre>getWisePartitioningElement(A[1:n]) Get B[1:m]; // O(n) time mm := Ouickselect(B[1:m].m/2);</pre>					
k < r: k > r:	return (QuickSel return (QuickSel	ect(A[1:r-1],k)); ect(A[r+1,n],k-r)); // why k-r, not k					
endcase end							

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (1/9) --

• Time of QuickSelect T(n) satisfies:

 $T(n) = \max(T(r-1), T(n-r)) + \text{time of wise_partition}$

• Time of wise_partition = time of QuickSelect(B,m/2) +

time of partition

$$=T\left(\frac{n}{5}\right)+cn$$

• Therefore, $T(n) = max(T(r-1), T(n-r)) + T\left(\frac{n}{5}\right) + cn$

• **Theorem**: Due to wise-partitioning, $\frac{n}{4} \le r \le \frac{3n}{4}$.

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (2/9) --

- Proof: Re-arrange the 5-element groups so that their middles are sorted
 1
 6
 2
 12
 6
 55
 27
- • Example: groups (columns) before re-arranging groups after re-arranging

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (3/9) --

• Now the median of B is in the middle of the middle column (see

example)		1	6	6	12	27	55
mm —	3	5	9	11	13	37	60
• The middle column is	4	7	-14	16	18	50	70
	8	19	30	17	22	80	77
column m/2	25	30	35	20	24	82	78

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (4/9) --

• Now the median of B is in the middle of the middle column (see example)

	2	1	6	6	12	27	55		
• The middle column is mm	3	5	9	11	13	37	60		
column m/2	4	7	-14	16	18	50	70		
	8	19	30	17	22	80	77		
	25	30	35	20	24	82	78		
• All its numbers $\leq mm$ Therefore, all that quadrant except mm will go to the left part of A after partition(A[1:n))									
• Number of elements in that quadrant = $3\frac{m}{2} = 3\frac{n/5}{2} = \frac{3n}{10} > \frac{n}{4}$									
• Since the left part after partitioning A has $r-1$ element and contains all the to									
left quadrant (except mm), we conclude that $r-1 \ge 3\frac{m}{2} - 1 \ge \frac{n}{4} - 1 \Rightarrow r \ge \frac{n}{4}$									

21

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (5/9) --

- So far we have $r \ge \frac{n}{4}$, that is, $\frac{n}{4} \le r$
- Now, if you analogously consider the bottom right quadrant, you find that its size is $> \frac{n}{4}$, and all its elements (except for mm) are > mm, and hence all of it (except mm) goes to the right part of A after partitioning around mm

• Therefore, $n - r \ge size \ of \ bottom \ right \ quadrant - 1 > \frac{n}{4} - 1$

• Thus,
$$n - r > \frac{n}{4} - 1 \Rightarrow n - r \ge \frac{n}{4} \Rightarrow r \le \frac{3n}{4}$$

• This completes the proof that
$$\frac{n}{4} \le r \le \frac{3n}{4}$$

Q.E.D.

22

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (6/9) --

- **Theorem**: The time complexity T(n) of QuickSelect(A[1:n],k) satisfies: $T(n) \le T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + cn$.
- Proof:

a. Recall
$$T(n) = \max(T(r-1), T(n-r)) + T\left(\frac{n}{5}\right) + cn$$

b. $T(r-1) \le T(\frac{3n}{4})$ because $r-1 < r \le \frac{3n}{4}$
c. $T(n-r) \le T(\frac{3n}{4})$ because $\frac{n}{4} \le r \Rightarrow n-r \le \frac{3n}{4}$
 $\frac{n}{4} \le r$

d. Therefore, $\max(T(r-1), T(n-r)) \le T(\frac{3n}{4})$ using (b) and (c)

e. Thus,
$$T(n) \le T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + cn$$
 using (a) and (d). Q.E.D.

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (7/9) --

- Theorem: The time complexity T(n) of QuickSelect(A[1:n],k) satisfies: T(n) ≤ 20cn.
- **Proof**: By induction on n.
 - <u>Basis steps</u>: for n=1. Need to prove $T(1) \le 20c1$.

Well, T(1) = c < 20c.

• Induction step: Assume $T(m) \le 20cm \forall m < n$. (This is called induction hypothesis (I.H.))

Prove $T(n) \leq 20cn$.

Recall
$$T(n) \le T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + cn$$
 (from last theorem)

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (8/9) --

- Theorem: The time complexity T(n) of QuickSelect(A[1:n],k) satisfies: T(n) ≤ 20cn.
- **Proof**: ... induction step next.

Prove $T(n) \leq 20cn$, assuming $T(m) \leq 20cm \forall m < n$

Recall
$$T(n) \leq T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + cn$$

Applying I.H. $T(m) \leq 20cm$ on $m = \frac{3n}{4} < n$, we get: $T\left(\frac{3n}{4}\right) \leq 20c\frac{3n}{4} = 15cn$
Applying I.H. $T(m) \leq 20cm$ on $m = \frac{n}{5} < n$, we get: $T\left(\frac{n}{5}\right) \leq \frac{20cn}{5} = 4cn$
Therefore, $T(n) \leq T\left(\frac{3n}{4}\right) + T\left(\frac{n}{5}\right) + cn \leq 15cn + 4cn + cn = 20cn$. Q.E.D.

25

QUICKSELECT -- TIME COMPLEXITY ANALYSIS (9/9) --

- By the last theorem, $T(n) \le 20cn$ and thus T(n) = O(n) because 20c is a constant.
- Therefore, QuickSelect takes O(n) time.
- Success!

DIVIDE AND CONQUER RECAP

- We saw how D&C works
- We saw several applications of it
- We carried out several time complexity analyses, including average case and worst case analyses
- In all cases, an intermediate recurrence relation for the time was derived and solved
- There are many more applications of D&C
- Although there are many other algorithmic design techniques, D&C is one of the first techniques that algorithm designers try when they want to solve non-trivial computational problems

A FEW OTHER QUICK D&C APPLICATIONS -- BINARY SEARCH IN A SORTED ARRAY --

- Input: A **<u>sorted</u>** array X[1:n] and a number a
- Output: Whether a is in X[1:n], and if so, find k where
- Function BinarySearch(X[1:n], a) {

If(n==1)

```
if(X[1]==a) return 1;
```

```
else return -1;
```

Endif

If
$$(a == X \left[\frac{n}{2}\right])$$
 Return (k);
Else if $(a < X \left[\frac{n}{2}\right])$
BinarySearch $(X[1:\frac{n}{2}-1], a)$;

Else

```
BinarySearch(X[\frac{n}{2}+1:n], a);
Endif
```

- Here is a situation where after the data is split into two halves, the algorithm is called on only one half.
- Therefore, a D&C algorithm need not call itself on each part of the split data
- Time Complexity T(n)=?; Assume n=2^k T(n)=T(n/2)+c T(n/2)=T(n/4)+c T(n/4)=T(n/8)+c

... $T(n/2^{k-1})=T(n/2^{k})+c$ Add and simplify: we get: $T(n)=T(n/2^{k})+c+c+...+c=T(1)+ck$ $T(n)=T(1)+c\log n = O(\log n)$

A FEW OTHER QUICK D&C APPLICATIONS -- POWER x^n --

- Input: A numerical value x and a non-negative integer n
- Output: the value of x^n

```
Simple method:
Func pow(x,n){
   y=1;
   For i=1 to n do
      y=y*x;
   Endfor
   Return y;
Time: T(n) = O(n)
```

D&C method: Func pow(x,n){ If (n==0) return 1; Else if (n==1) return x; Else z=pow(x,n/2); $y=z^{*}z;$ If (n is odd) y=y*x; Return y; Endif

Time: T(n)=T(n/2)+cTherefore, $T(n)=O(\log n);$

A FEW OTHER QUICK D&C APPLICATIONS -- POLYNOMIAL EVALUATION (1/3) --

- Input:
 - A polynomial $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$ represented simply by the array a[0:n-1]
 - A number x // example 2, 5, 3.6, etc.
- Output: the value of P(x) evaluated at the input value of x
- D&C method:
 - Begin with the partitioning of the input into two halves, next
 - Let $m = \frac{n}{2}$

•
$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1} + a_m x^m + \dots + a_{n-1} x^{n-1}$$

30

A FEW OTHER QUICK D&C APPLICATIONS -- POLYNOMIAL EVALUATION (2/3) --

• D&C method:

- Let $m = \frac{n}{2}$ • $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1} + a_m x^m + \dots + a_{n-1} x^{n-1}$ • $P(x) = [a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}] + [a_m x^m + a_{m+1} x^{m+1} + \dots \dots + a_{n-1} x^{n-1}]$ • $P(x) = [a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}] + x^m [a_m + a_{m+1} x^1 + \dots + a_{n-1} x^{n-m-1}]$ • $P(x) = Q(x) + x^m R(x)$ Where $Q(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{m-1} x^{m-1}$, represented by a[0:m-1]
 - and $R(m) = a_m + a_{m+1}x^1 + \dots + a_{n-1}x^{n-m-1}$, represented by a[m: n-1]
- Now we can call the algorithm recursively on Q(x) and R(x)
- Merging: compute x^m and then $P(x) = Q(x) + x^m R(x)$ and return P(x);

31

A FEW OTHER QUICK D&C APPLICATIONS -- POLYNOMIAL EVALUATION (3/3) --

Function Poly(a[0,n-1], x)

Begin

If (n=0) then

returna[0];

Else

m=n/2; Q=Poly(a[0,m-1], x); R=Poly([0,a[m,n-1]], x) y=pow(x,m); Return Q+y*R; Endif

End Poly

- Time Complexity analysis:
 //Assume we have already computed the
 // powers of x: x, x², x³, ... in O(n) time
- T(n)=2T(n/2)+c
- Therefore,T(n)=O(n)
- Could we compute the polynomial in a straightforward way (without D&C) in O(n) time?
- Yes (An exercise)
- So why bother with D&C (see later)

ANY ADVANTAGE TO D&C WHEN SIMPLER METHODS ARE AS FAST? (1/2)

- We just saw that computing a polynomial can be done in a simple fashion in O(n) time, i.e., as fast as the D&C method
- Similarly, for a given array X[1:n], you can find its min, max, and sum:
 - in a simple fashion in O(n) time, and also
 - using D&C in O(n) time
- Is there any advantage to using D&C in such situations?

ANY ADVANTAGE TO D&C WHEN SIMPLER METHODS ARE AS FAST? (2/2)

- Is there any advantage to using D&C in such situations?
- Answer:YES,YES
 - Suppose you have a multicore machine (of many processors)
 - The D&C method produces an algorithm where the (recursive) calls on the subparts of the data can be executed in parallel (i.e., simultaneously) on the different cores
 - This results in some serious speedup of the algorithm, by a factor of k, where k is the number of cores
- The other, simpler methods may be too serial, i.e., **unsplittable** into processes that can utilize the different cores simultaneously

ANOTHER "KILLER" APPLICATION OF D&C -- DISCRETE FOURIER TRANSFORM (1/5) --

- The Discrete Fourier Transform (DFT)
- It transforms an input column vector X (i.e., array) of length n to another (output) column vector Y (of the same length n)
 - by multiplying X by a specific $n \times n$ matrix A
 - That is, Y = AX
- You probably have learned matrix multiplication, but if not, we will cover it later in the semester
- For now, suffice it to say that the transform (AX) takes $O(n^2)$ time
- For n fairly large (in the thousands/millions), $O(n^2)$ is quite slow

ANOTHER "KILLER" APPLICATION OF D&C -- DISCRETE FOURIER TRANSFORM (2/5) --

- The Discrete Fourier Transform (DFT)
- The transform (AX) takes $O(n^2)$ time
- For *n* fairly large (in the thousands/millions), $O(n^2)$ is quite slow
- In practice, the DFT is used to
 - Filter signals like audio (phone calls, Radio, TV) and video (TV)
 - Reduce/eliminate noise in phone calls, radio/TV broadcast, etc.
- Such things have to be done in <u>real time</u> (e.g., during a phone call), on small devices (e.g., smart/regular phones, car radio)
- Therefore, they must on "small computers" yet fast enough for realtime user experience

ANOTHER "KILLER" APPLICATION OF D&C -- DISCRETE FOURIER TRANSFORM (3/5) --

- Such things (Filtering, noise removal) have to be done in <u>real time</u> (e.g., during a phone call), on small devices (e.g., smart/regular phones, car radio)
- Therefore, they must on "small computers" yet fast enough for real-time user experience
- The lengths of such digital signals, even when divided into short chunks (like one second worth of digital sound), are in the 10,000's of numbers per chunk
- Transforming such chunks using DFT take 100M's operations/chunk if done the straightforward way
- Also, every chunk has to be processed in less than one second in order for the filtering and the ongoing phone call to [proceed hand-in-hand
- No phone/radio can perform at such a speed in real time, especially in older years

ANOTHER "KILLER" APPLICATION OF D&C -- DISCRETE FOURIER TRANSFORM (4/5) --

- No phone/radio can perform at such a speed in real time, especially in older years
- Therefore, scientists/engineers had to find a faster algorithm for DFT
- Such an algorithm was found (by **Cooley** and **Tukey)** in 1965
 - The algorithm is **Divide & Conquer** algorithm!
 - It takes $O(n \log n)$ time, which, as we have seen multiple times already, is much faster than $O(n^2)$
 - The algorithm is referred to as Fast Fourier Transform (FFT)

ANOTHER "KILLER" APPLICATION OF D&C -- DISCRETE FOURIER TRANSFORM (5/5) --

- The Fast Fourier Transform (FFT)
- To understand the algorithm, you need to know:
 - Matrix multiplication
 - Complex numbers
 - A bit of Trigonometry
 - Divide & Conquer
- We will not cover it in this course, but if you're interested you can find much coverage on it on the Web
- Suffice it to say that FFT was a revolutionary discovery with great impact on modern electronic technology and engineering applications