
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DIVIDE & CONQUER –
PART II

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Divide & Conquer

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Apply the Divide & Conquer technique in more elaborate
ways to design an algorithm for selecting elements of
arbitrary ranks from an input array

• Carry out more involved time complexity analysis using
induction

CS 6212 Design and Analysis of Algorithms Divide & Conquer

2

OUTLINE

• Third application of Divide and Conquer: Order Statistics (i.e.,
finding the kth smallest element in an array)

• Basic D&C approach

• More advanced D&C approach

• Detailed time complexity analysis

CS 6212 Design and Analysis of Algorithms Divide & Conquer

3

DIVIDE & CONQUER
-- TEMPLATE REMINDER --

Template divide&conquer (input I)

begin

if (size or value of input is small enough)
then

solve directly and return;

endif

divide input I into two or more parts I1, I2,...;

S1 divide&conquer(I1) ;

S2 divide&conquer(I2) ;

……………..

Merge the subsolutions S1, S2,...into a

global solution S;

end
CS 6212 Design and Analysis of Algorithms Divide & Conquer 4

Input I

I1 I2 Ik

S1 S2 Sk

Merge

Final Global Solution

DIVIDE & CONQUER
-- THE ORDER STATISTICS PROBLEM --

• Problem:
• Input: An arbitrary array A[1:n] of comparable data (i.e., has a

comparator like ≤), and an integer 𝑘𝑘 (1 ≤ 𝑘𝑘 ≤ 𝑛𝑛)

• Output: The 𝑘𝑘𝑡𝑡𝑡 smallest element of the array A

• Task: Develop a D&C algorithm for finding the 𝑘𝑘𝑡𝑡𝑡 smallest element
of input array A

CS 6212 Design and Analysis of Algorithms Divide & Conquer

5

THE ORDER STATISTICS PROBLEM
-- SPECIAL CASES --

• If 𝑘𝑘 = 1, the problem reduces to finding the minimum

• If 𝑘𝑘 = 𝑛𝑛, the problem reduces to finding the maximum

• If 𝑘𝑘 = 𝑛𝑛
2
, the problem reduces to finding the median

• So, the Order Statistics problem is a generalization of finding
the min/max/median problem (to find the 𝑘𝑘𝑡𝑡𝑡 smallest for
arbitrary 𝑘𝑘)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

6

THE ORDER STATISTICS PROBLEM
-- TIME COMPLEXITY CONSIDERATIONS (1) --

• Finding the min or max can be done in O(n) time

• Scan the array left to right,

keeping track of the min/max so far

• If 𝑘𝑘 = 𝑛𝑛
2
, the problem reduces to finding the median

• Can it be done in O(n) time?

• In general, given that the min/max can be found in O(n), can
we find the 𝑘𝑘𝑡𝑡𝑡 smallest in O(n) time no matter what 𝑘𝑘 is?

CS 6212 Design and Analysis of Algorithms Divide & Conquer

7

M=A[1];
for i=2 to n do

M=min(M,A[i]);
endfor;
return M;

THE ORDER STATISTICS PROBLEM
-- TIME COMPLEXITY CONSIDERATIONS (2) --

• “Tempting” solution:
• Sort the array; 𝑘𝑘𝑡𝑡𝑡smallest is in the 𝑘𝑘𝑡𝑡𝑡position of the sorted array

• But that takes 𝑂𝑂 𝑛𝑛 log 𝑛𝑛 time.

• Given the higher 𝑂𝑂 𝑛𝑛 log𝑛𝑛 cost of the sorting-based solution, is it
reasonable to still hope for an O(n) algorithm?

• Well, the sorting-based solution does too much work: it can find
not only the 𝑘𝑘𝑡𝑡𝑡 smallest value for the given k, but also, the 1st

smallest, the 2nd smallest, the 3rd smallest, … .

• So, there is a possibility for an O(n) algorithm that finds the 𝑘𝑘𝑡𝑡𝑡
smallest for just the given 𝑘𝑘

CS 6212 Design and Analysis of Algorithms Divide & Conquer

8

THE ORDER STATISTICS PROBLEM
-- A FIRST D&C ATTEMPT --

CS 6212 Design and Analysis of Algorithms Divide & Conquer

9

function select(A[1:n],k) // returns the 𝑘𝑘𝑡𝑡𝑡smallest value of A
// it is assumed that 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛
begin

if n==1 then // k must then be 1
return (A[1]);

endif
r := partition(A[1:n],1,n); // same as in Quicksort
case

k=r: return (A[r]);
k < r: return (select(A[1:r-1],k));
k > r: return (select(A[r+1,n],k-r)); // why k-r, not k

endcase
end

CYU

• Why k-r instead of k in the case k>r

CS 6212 Design and Analysis of Algorithms Divide & Conquer

10

TIME COMPLEXITY OF SELECT

• 𝑇𝑇 𝑛𝑛 = max the times of the the 3 cases + partition time

• 𝑇𝑇 𝑛𝑛 = max 𝑐𝑐,𝑇𝑇 𝑟𝑟 − 1 ,𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + 𝑐𝑐𝑛𝑛

• 𝑻𝑻 𝒏𝒏 = 𝐦𝐦𝐦𝐦𝐦𝐦 𝑻𝑻 𝒓𝒓 − 𝟏𝟏 ,𝑻𝑻 𝒏𝒏 − 𝒓𝒓 + 𝒄𝒄𝒏𝒏
• because 𝑐𝑐 ≤ 𝑇𝑇 𝑟𝑟 − 1 and 𝑇𝑇(𝑛𝑛 − 𝑟𝑟)

• The value 𝑟𝑟 is unknown (can be any value in 1: 𝑛𝑛), so it is not
possible to solve that recurrence relation. Instead, we can do
one or both of the following:

• Worst-case time complexity

• Average-case time complexity

CS 6212 Design and Analysis of Algorithms Divide & Conquer

11

TIME COMPLEXITY OF SELECT
-- WORST-CASE TIME COMPLEXITY --

• 𝑻𝑻 𝒏𝒏 = 𝐦𝐦𝐦𝐦𝐦𝐦 𝑻𝑻 𝒓𝒓− 𝟏𝟏 ,𝑻𝑻 𝒏𝒏− 𝒓𝒓 + 𝒄𝒄𝒏𝒏

• Worst case in D&C happens when the partitioned data is
extremely unbalanced: (one part is empty, the other part full)

• In that case, 𝑟𝑟 = 1, i.e., 𝑟𝑟 − 1 = 0, or 𝑟𝑟 = 𝑛𝑛

• Either way, we’ll have: 𝑇𝑇 𝑛𝑛 = max 𝑇𝑇 0 ,𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛, that is,

• 𝑻𝑻 𝒏𝒏 = 𝑻𝑻(𝒏𝒏− 𝟏𝟏) + 𝒄𝒄𝒏𝒏

• We saw that recurrence relation in Quicksort: 𝑻𝑻 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝟐𝟐)

• That is a shock: we were trying to beat 𝑂𝑂 𝑛𝑛 log𝑛𝑛 , but got 𝑂𝑂(𝑛𝑛2)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

12

TIME COMPLEXITY OF SELECT
-- AVERAGE-CASE TIME COMPLEXITY --

• 𝑻𝑻 𝒏𝒏 = 𝐦𝐦𝐦𝐦𝐦𝐦 𝑻𝑻 𝒓𝒓 − 𝟏𝟏 ,𝑻𝑻 𝒏𝒏 − 𝒓𝒓 + 𝒄𝒄𝒏𝒏

• Worst case is too expensive and too extreme

• Average-case is more representative

• We will not do it, but you are invited to carry out an average-
case time complexity analysis (like the one for Quicksort)

• You will discover that average-case time: 𝑻𝑻𝑨𝑨 𝒏𝒏 = 𝑶𝑶 𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏

• Better, but not good enough

CS 6212 Design and Analysis of Algorithms Divide & Conquer

13

Remember, we’re hoping
for O(n)

THE ORDER STATISTICS PROBLEM
-- A SECOND D&C ATTEMPT: QUICKSELECT --

• Same as 1st attempt, but we “fix” partition to avoid imbalance

CS 6212 Design and Analysis of Algorithms Divide & Conquer

14

function QuickSelect(A[1:n],k) // returns the 𝑘𝑘𝑡𝑡𝑡smallest of A
// it is assumed that 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛
begin

if n==1 then // k must then be 1
return (A[1]);

endif
r := wise_partition(A[1:n]);
case

k=r: return (A[r]);
k < r: return (select(A[1:r-1],k));
k > r: return (select(A[r+1,n],k-r)); // why k-r, not k

endcase
end

QUICKSELECT
-- WISE_PARTITION --

• Same as 1st attempt, but we “fix” partition to avoid imbalance

• How: Pick a better partitioning element than A[1]. How?

CS 6212 Design and Analysis of Algorithms Divide & Conquer

15

Function getWisePartitioningElement(A[1:n])
begin

int m=n/5; // integer division
Divide the array into groups of five each: A[1:5], A[6:10],...;
Sort each group; // Now A[1:5] is sorted, A[6:10] is sorted, ...
B[1:m] := the array of the middles of the sorted groups: B=A[3],A[8], A[13],...
mm = the median of B, that is, the m/2-th smallest element of B[1:m];
Group discussions: How to find the median of B?
return (mm);

end

B:

QUICKSELECT
-- WISE_PARTITION --

• Same as 1st attempt, but we “fix” partition to avoid imbalance

• How: Pick a better partitioning element than A[1]. How?

CS 6212 Design and Analysis of Algorithms Divide & Conquer

16

Function getWisePartitioningElement(A[1:n])
begin

int m=n/5; // integer division
Divide the array into groups of five each: A[1:5], A[6:10],...;
Sort each group; // Now A[1:5] is sorted, A[6:10] is sorted, ...
B[1:m] := the array of the middles of the sorted groups: B=A[3],A[8], A[13],...
//find the median of B, i.e., the m/2-th smallest of B
mm := Quickselect(B[1:m],m/2);
return (mm);

end

B:

QUICKSELECT
-- ALGORITHM --

CS 6212 Design and Analysis of Algorithms Divide & Conquer

17

function QuickSelect(A[1:n],k) // returns the 𝑘𝑘𝑡𝑡𝑡smallest of A
// it is assumed that 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛
begin

if n==1 then // k must be 1
return (A[1]);

endif
r := wise_partition(A[1:n]);
case

k=r: return (A[r]);
k < r: return (QuickSelect(A[1:r-1],k));
k > r: return (QuickSelect(A[r+1,n],k-r)); // why k-r, not k

endcase
end

wise_partition(A[1:n]):
• mm=getWisePartitioningElement(A[1:n])
• Swap A[1] with mm
• r=partition(A[1:n])
• return (r)

getWisePartitioningElement(A[1:n])
• Get B[1:m]; // O(n) time
• mm := Quickselect(B[1:m],m/2);

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (1/9) --

• Time of QuickSelect 𝑇𝑇 𝑛𝑛 satisfies:

𝑇𝑇 𝑛𝑛 = max 𝑇𝑇 𝑟𝑟 − 1 ,𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + time of wise_partition

• Time of wise_partition = time of QuickSelect(B,m/2) +

time of partition

= 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛

• Therefore, 𝑻𝑻 𝒏𝒏 = 𝒎𝒎𝒎𝒎𝒎𝒎 𝑻𝑻 𝒓𝒓 − 𝟏𝟏 ,𝑻𝑻 𝒏𝒏 − 𝒓𝒓 + 𝑻𝑻 𝒏𝒏
𝟓𝟓

+ 𝒄𝒄𝒏𝒏

• Theorem: Due to wise-partitioning,
𝑛𝑛
4
≤ 𝑟𝑟 ≤ 3𝑛𝑛

4
.

CS 6212 Design and Analysis of Algorithms Divide & Conquer

18

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (2/9) --

• Proof: Re-arrange the 5-element groups so that their middles are
sorted

• Example:
groups (columns) before

re-arranging

groups after re-arranging

CS 6212 Design and Analysis of Algorithms Divide & Conquer

19

1 6 2 12 6 55 27

5 11 3 13 9 60 37

7 16 4 18 14 70 50

19 17 8 22 30 77 80

30 20 25 24 35 78 82

2 1 6 6 12 27 55

3 5 9 11 13 37 60

4 7 14 16 18 50 70

8 19 30 17 22 80 77

25 30 35 20 24 82 78

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (3/9) --

• Now the median of B is in the middle of the middle column (see
example)

• The middle column is

column m/2

CS 6212 Design and Analysis of Algorithms Divide & Conquer

20

2 1 6 6 12 27 55

3 5 9 11 13 37 60

4 7 14 16 18 50 70

8 19 30 17 22 80 77

25 30 35 20 24 82 78

mm

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (4/9) --

• Now the median of B is in the middle of the middle column (see example)

• The middle column is

column m/2

• Consider the top left quadrant:

• All its numbers ≤ 𝑚𝑚𝑚𝑚

• Number of elements in that quadrant = 3𝑚𝑚
2

= 3 𝑛𝑛/5
2

= 3𝑛𝑛
10

> 𝑛𝑛
4

• Since the left part after partitioning A has 𝑟𝑟 − 1 element and contains all the top

left quadrant (except mm), we conclude that 𝑟𝑟 − 1 ≥ 3𝑚𝑚
2
− 1 ≥ 𝑛𝑛

4
− 1 ⇒ 𝑟𝑟 ≥ 𝑛𝑛

4

CS 6212 Design and Analysis of Algorithms Divide & Conquer

21

2 1 6 6 12 27 55

3 5 9 11 13 37 60

4 7 14 16 18 50 70

8 19 30 17 22 80 77

25 30 35 20 24 82 78

mm

Therefore, all that quadrant except mm will go to
the left part of A after partition(A[1:n))

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (5/9) --

• So far we have 𝑟𝑟 ≥ 𝑛𝑛
4

, that is,𝒏𝒏
𝟒𝟒
≤ 𝒓𝒓

• Now, if you analogously consider the bottom right quadrant, you find

that its size is > 𝑛𝑛
4
, and all its elements (except for mm) are > mm,

and hence all of it (except mm) goes to the right part of A after
partitioning around mm

• Therefore, 𝑛𝑛 − 𝑟𝑟 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑏𝑏𝑜𝑜𝑏𝑏𝑏𝑏𝑜𝑜𝑚𝑚 𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑏𝑏 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑞𝑞𝑛𝑛𝑏𝑏 − 1 > 𝑛𝑛
4
− 1

• Thus, 𝑛𝑛 − 𝑟𝑟 > 𝑛𝑛
4
− 1 ⇒ 𝑛𝑛 − 𝑟𝑟 ≥ 𝑛𝑛

4
⇒ 𝒓𝒓 ≤ 𝟑𝟑𝒏𝒏

𝟒𝟒

• This completes the proof that
𝒏𝒏
𝟒𝟒
≤ 𝒓𝒓 ≤ 3n

4
. Q.E.D.

CS 6212 Design and Analysis of Algorithms Divide & Conquer

22

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (6/9) --

• Theorem: The time complexity 𝑇𝑇 𝑛𝑛 of QuickSelect(A[1:n],k)

satisfies: 𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇 3𝑛𝑛
4

+ 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛.

• Proof:

a. Recall 𝑇𝑇 𝑛𝑛 = max 𝑇𝑇 𝑟𝑟 − 1 ,𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛

b. 𝑇𝑇 𝑟𝑟 − 1 ≤ 𝑇𝑇(3𝑛𝑛
4

) because 𝑟𝑟 − 1 < 𝑟𝑟 ≤ 3𝑛𝑛
4

c. 𝑇𝑇 𝑛𝑛 − 𝑟𝑟 ≤ 𝑇𝑇(3𝑛𝑛
4

) because
𝑛𝑛
4
≤ 𝑟𝑟 ⇒ 𝑛𝑛 − 𝑟𝑟 ≤ 3𝑛𝑛

4

d. Therefore, max 𝑇𝑇 𝑟𝑟 − 1 ,𝑇𝑇 𝑛𝑛 − 𝑟𝑟 ≤ 𝑇𝑇(3𝑛𝑛
4

) using (b) and (c)

e. Thus, 𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇 3𝑛𝑛
4

+ 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛 using (a) and (d). Q.E.D.

CS 6212 Design and Analysis of Algorithms Divide & Conquer

23

𝒏𝒏
𝟒𝟒 ≤ 𝒓𝒓 ≤

3n
4

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (7/9) --

• Theorem: The time complexity 𝑇𝑇 𝑛𝑛 of QuickSelect(A[1:n],k)
satisfies: 𝑇𝑇 𝑛𝑛 ≤ 20𝑐𝑐𝑛𝑛.

• Proof: By induction on n.
• Basis steps: for n=1. Need to prove 𝑇𝑇 1 ≤ 20𝑐𝑐1.

Well, 𝑇𝑇 1 = 𝑐𝑐 < 20𝑐𝑐.
• Induction step: Assume 𝑇𝑇 𝑚𝑚 ≤ 20𝑐𝑐𝑚𝑚 ∀𝑚𝑚 < 𝑛𝑛. (This is called

induction hypothesis (I.H.))

Prove 𝑇𝑇 𝑛𝑛 ≤ 20𝑐𝑐𝑛𝑛.

Recall 𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇 3𝑛𝑛
4

+ 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛 (from last theorem)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

24

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (8/9) --

• Theorem: The time complexity 𝑇𝑇 𝑛𝑛 of QuickSelect(A[1:n],k)
satisfies: 𝑇𝑇 𝑛𝑛 ≤ 20𝑐𝑐𝑛𝑛.

• Proof: … induction step next.

Prove 𝑇𝑇 𝑛𝑛 ≤ 20𝑐𝑐𝑛𝑛, assuming 𝑇𝑇 𝑚𝑚 ≤ 20𝑐𝑐𝑚𝑚 ∀𝑚𝑚 < 𝑛𝑛

Recall 𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇 3𝑛𝑛
4

+ 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛

Applying I.H. 𝑇𝑇 𝑚𝑚 ≤ 20𝑐𝑐𝑚𝑚 on 𝑚𝑚 = 3𝑛𝑛
4

< 𝑛𝑛, we get: 𝑇𝑇 3𝑛𝑛
4

≤ 20𝑐𝑐 3𝑛𝑛
4

= 15𝑐𝑐𝑛𝑛

Applying I.H. 𝑇𝑇 𝑚𝑚 ≤ 20𝑐𝑐𝑚𝑚 on 𝑚𝑚 = 𝑛𝑛
5

< 𝑛𝑛, we get: 𝑇𝑇 𝑛𝑛
5
≤ 20𝑐𝑐𝑛𝑛

5
= 4𝑐𝑐𝑛𝑛

Therefore, 𝑇𝑇 𝑛𝑛 ≤ 𝑇𝑇 3𝑛𝑛
4

+ 𝑇𝑇 𝑛𝑛
5

+ 𝑐𝑐𝑛𝑛 ≤ 15𝑐𝑐𝑛𝑛+ 4𝑐𝑐𝑛𝑛+ 𝑐𝑐𝑛𝑛 = 20𝑐𝑐𝑛𝑛. Q.E.D.

CS 6212 Design and Analysis of Algorithms Divide & Conquer

25

QUICKSELECT
-- TIME COMPLEXITY ANALYSIS (9/9) --

• By the last theorem, 𝑇𝑇 𝑛𝑛 ≤ 20𝑐𝑐𝑛𝑛 and thus 𝑇𝑇 𝑛𝑛 = 𝑂𝑂(𝑛𝑛)
because 20𝑐𝑐 is a constant.

• Therefore, QuickSelect takes 𝑶𝑶(𝒏𝒏) time.

• Success!

CS 6212 Design and Analysis of Algorithms Divide & Conquer

26

DIVIDE AND CONQUER RECAP

• We saw how D&C works

• We saw several applications of it

• We carried out several time complexity analyses, including
average case and worst case analyses

• In all cases, an intermediate recurrence relation for the time was
derived and solved

• There are many more applications of D&C

• Although there are many other algorithmic design techniques,
D&C is one of the first techniques that algorithm designers try
when they want to solve non-trivial computational problems

CS 6212 Design and Analysis of Algorithms Divide & Conquer

27

A FEW OTHER QUICK D&C APPLICATIONS
-- BINARY SEARCH IN A SORTED ARRAY --

• Input: A sorted array 𝑋𝑋[1:𝑛𝑛] and a number 𝑞𝑞

• Output: Whether 𝑞𝑞 is in 𝑋𝑋[1:𝑛𝑛], and if so, find k where 𝑋𝑋[𝑘𝑘] = 𝑞𝑞

• Function BinarySearch(𝑋𝑋[1:𝑛𝑛] , 𝑞𝑞) {
If(n==1)

if(X[1]==a) return 1;
else return -1;

Endif

If(a == 𝑋𝑋 𝑛𝑛
2

)Return (k);

Else if (a < 𝑋𝑋 𝑛𝑛
2

)

BinarySearch(𝑋𝑋[1:𝑛𝑛
2
− 1] , 𝑞𝑞) ;

Else

BinarySearch(𝑋𝑋[𝑛𝑛
2

+ 1:𝑛𝑛] , 𝑞𝑞) ;

Endif

}
CS 6212 Design and Analysis of Algorithms Divide & Conquer

28

• Here is a situation where after the data
is split into two halves, the algorithm is
called on only one half.

• Therefore, a D&C algorithm need not
call itself on each part of the split data

• Time Complexity T(n)=?; Assume n=2k

T(n)=T(n/2)+c
T(n/2)=T(n/4)+c
T(n/4)=T(n/8)+c
…
T(n/2𝑘𝑘−1)=T(n/2𝑘𝑘)+c
Add and simplify: we get:
T(n)=T(n/2𝑘𝑘)+c+c+…+c=T(1)+ck
T(n)=T(1)+c log n = O(log n)

A FEW OTHER QUICK D&C APPLICATIONS
-- POWER 𝒎𝒎𝒏𝒏--

• Input: A numerical value x and a non-negative integer n

• Output: the value of 𝑥𝑥𝑛𝑛

CS 6212 Design and Analysis of Algorithms Divide & Conquer

29

Simple method:
Func pow(x,n){

y=1;
For i=1 to n do

y=y*x;
Endfor
Return y;

}

Time: T(n)=O(n)

D&C method:
Func pow(x,n){

If (n==0) return 1;
Else if (n==1) return x;
Else

z=pow(x,n/2);
y=z*z;
If (n is odd) y=y*x;
Return y;

Endif
}

Time:
T(n)=T(n/2)+c
Therefore,
T(n)=O(log n);

A FEW OTHER QUICK D&C APPLICATIONS
-- POLYNOMIAL EVALUATION (1/3) --

• Input:
• A polynomial 𝑃𝑃 𝑥𝑥 = 𝑞𝑞0 + 𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + 𝑞𝑞3𝑥𝑥3 +⋯+𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−1

represented simply by the array 𝑞𝑞[0:𝑛𝑛 − 1]
• A number 𝑥𝑥 // example 2, 5, 3.6, etc.

• Output: the value of 𝑃𝑃 𝑥𝑥 evaluated at the input value of 𝑥𝑥
• D&C method:

• Begin with the partitioning of the input into two halves, next

• Let 𝑚𝑚 = 𝑛𝑛
2

• 𝑃𝑃 𝑥𝑥 = 𝑞𝑞0 + 𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 +⋯+𝑞𝑞𝑚𝑚−1 𝑥𝑥𝑚𝑚−1 + 𝑞𝑞𝑚𝑚𝑥𝑥𝑚𝑚 + ⋯+𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−1

CS 6212 Design and Analysis of Algorithms Divide & Conquer

30

A FEW OTHER QUICK D&C APPLICATIONS
-- POLYNOMIAL EVALUATION (2/3) --

• D&C method:

• Let 𝑚𝑚 = 𝑛𝑛
2

• 𝑃𝑃 𝑥𝑥 = 𝑞𝑞0 + 𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + ⋯+𝑞𝑞𝑚𝑚−1 𝑥𝑥𝑚𝑚−1 + 𝑞𝑞𝑚𝑚𝑥𝑥𝑚𝑚 + ⋯+𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−1

• 𝑃𝑃 𝑥𝑥 = [𝑞𝑞0+𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + ⋯+𝑞𝑞𝑚𝑚−1 𝑥𝑥𝑚𝑚−1] + [𝑞𝑞𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑞𝑞𝑚𝑚+1𝑥𝑥𝑚𝑚+1 + ⋯… +𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−1]

• 𝑃𝑃 𝑥𝑥 = [𝑞𝑞0+𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + ⋯+𝑞𝑞𝑚𝑚−1 𝑥𝑥𝑚𝑚−1] + 𝑥𝑥𝑚𝑚[𝑞𝑞𝑚𝑚 + 𝑞𝑞𝑚𝑚+1𝑥𝑥1 + ⋯+𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−𝑚𝑚−1]

• 𝑃𝑃 𝑥𝑥 = 𝑄𝑄 𝑥𝑥 + 𝑥𝑥𝑚𝑚𝑅𝑅(𝑥𝑥)

Where 𝑄𝑄 𝑥𝑥 = 𝑞𝑞0 + 𝑞𝑞1𝑥𝑥 + 𝑞𝑞2𝑥𝑥2 + ⋯+𝑞𝑞𝑚𝑚−1 𝑥𝑥𝑚𝑚−1, represented by 𝑞𝑞[0:𝑚𝑚 − 1]
and 𝑅𝑅 𝑚𝑚 = 𝑞𝑞𝑚𝑚 + 𝑞𝑞𝑚𝑚+1𝑥𝑥1 +⋯+𝑞𝑞𝑛𝑛−1 𝑥𝑥𝑛𝑛−𝑚𝑚−1, represented by 𝑞𝑞[𝑚𝑚:𝑛𝑛 − 1]

• Now we can call the algorithm recursively on 𝑄𝑄 𝑥𝑥 and 𝑅𝑅(𝑥𝑥)

• Merging: compute 𝑥𝑥𝑚𝑚 and then 𝑃𝑃 𝑥𝑥 = 𝑄𝑄 𝑥𝑥 + 𝑥𝑥𝑚𝑚𝑅𝑅(𝑥𝑥) and return 𝑃𝑃 𝑥𝑥 ;

CS 6212 Design and Analysis of Algorithms Divide & Conquer

31

A FEW OTHER QUICK D&C APPLICATIONS
-- POLYNOMIAL EVALUATION (3/3) --

Function Poly(a[0,n-1] , x)

Begin
If (n=0) then

return a[0];
Else

m=n/2;
Q=Poly(a[0,m-1], x);
R=Poly([0,a[m,n-1]], x)
y=pow(x,m);
Return Q+y*R;

Endif

End Poly

CS 6212 Design and Analysis of Algorithms Divide & Conquer

32

• Time Complexity analysis:
//Assume we have already computed the
// powers of x: 𝑥𝑥,𝑥𝑥2,𝑥𝑥3,… in O(n) time

• T(n)=2T(n/2)+c
• Therefore, T(n)=O(n)

• Could we compute the polynomial in a
straightforward way (without D&C) in O(n)
time?

• Yes (An exercise)
• So why bother with D&C (see later)

ANY ADVANTAGE TO D&C WHEN SIMPLER
METHODS ARE AS FAST? (1/2)

• We just saw that computing a polynomial can be done in a
simple fashion in O(n) time, i.e., as fast as the D&C method

• Similarly, for a given array X[1:n], you can find its min, max,
and sum:

• in a simple fashion in O(n) time, and also

• using D&C in O(n) time

• Is there any advantage to using D&C in such situations?

CS 6212 Design and Analysis of Algorithms Divide & Conquer

33

ANY ADVANTAGE TO D&C WHEN SIMPLER
METHODS ARE AS FAST? (2/2)

• Is there any advantage to using D&C in such situations?

• Answer: YES, YES
• Suppose you have a multicore machine (of many processors)

• The D&C method produces an algorithm where the (recursive) calls
on the subparts of the data can be executed in parallel (i.e.,
simultaneously) on the different cores

• This results in some serious speedup of the algorithm, by a factor of
k, where k is the number of cores

• The other, simpler methods may be too serial, i.e., unsplittable
into processes that can utilize the different cores simultaneously

CS 6212 Design and Analysis of Algorithms Divide & Conquer

34

ANOTHER “KILLER” APPLICATION OF D&C
-- DISCRETE FOURIER TRANSFORM (1/5) --

• The Discrete Fourier Transform (DFT)

• It transforms an input column vector 𝑋𝑋 (i.e., array) of length 𝑛𝑛 to
another (output) column vector 𝑌𝑌 (of the same length 𝑛𝑛)

• by multiplying X by a specific 𝑛𝑛 × 𝑛𝑛 matrix 𝐴𝐴
• That is, 𝑌𝑌 = 𝐴𝐴𝑋𝑋

• You probably have learned matrix multiplication, but if not, we will
cover it later in the semester

• For now, suffice it to say that the transform (𝐴𝐴𝑋𝑋) takes O(𝑛𝑛2) time

• For n fairly large (in the thousands/millions), O(𝑛𝑛2) is quite slow

CS 6212 Design and Analysis of Algorithms Divide & Conquer

35

ANOTHER “KILLER” APPLICATION OF D&C
-- DISCRETE FOURIER TRANSFORM (2/5) --

• The Discrete Fourier Transform (DFT)

• The transform (𝐴𝐴𝑋𝑋) takes O(𝑛𝑛2) time

• For 𝑛𝑛 fairly large (in the thousands/millions), O(𝑛𝑛2) is quite slow

• In practice, the DFT is used to
• Filter signals like audio (phone calls, Radio, TV) and video (TV)
• Reduce/eliminate noise in phone calls, radio/TV broadcast, etc.

• Such things have to be done in real time (e.g., during a phone
call), on small devices (e.g., smart/regular phones, car radio)

• Therefore, they must on “small computers” yet fast enough for real-
time user experience

CS 6212 Design and Analysis of Algorithms Divide & Conquer

36

ANOTHER “KILLER” APPLICATION OF D&C
-- DISCRETE FOURIER TRANSFORM (3/5) --

• Such things (Filtering, noise removal) have to be done in real time (e.g.,
during a phone call), on small devices (e.g., smart/regular phones, car radio)

• Therefore, they must on “small computers” yet fast enough for real-time user
experience

• The lengths of such digital signals, even when divided into short chunks (like
one second worth of digital sound), are in the 10,000’s of numbers per chunk

• Transforming such chunks using DFT take 100M’s operations/chunk if done the
straightforward way

• Also, every chunk has to be processed in less than one second in order for the
filtering and the ongoing phone call to [proceed hand-in-hand

• No phone/radio can perform at such a speed in real time, especially in older
years

CS 6212 Design and Analysis of Algorithms Divide & Conquer

37

ANOTHER “KILLER” APPLICATION OF D&C
-- DISCRETE FOURIER TRANSFORM (4/5) --

• No phone/radio can perform at such a speed in real time,
especially in older years

• Therefore, scientists/engineers had to find a faster algorithm
for DFT

• Such an algorithm was found (by Cooley and Tukey) in 1965

• The algorithm is Divide & Conquer algorithm!

• It takes 𝑂𝑂(𝑛𝑛 log𝑛𝑛) time, which, as we have seen multiple times
already, is much faster than 𝑂𝑂(𝑛𝑛2)

• The algorithm is referred to as Fast Fourier Transform (FFT)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

38

ANOTHER “KILLER” APPLICATION OF D&C
-- DISCRETE FOURIER TRANSFORM (5/5) --

• The Fast Fourier Transform (FFT)

• To understand the algorithm, you need to know:
• Matrix multiplication
• Complex numbers
• A bit of Trigonometry
• Divide & Conquer

• We will not cover it in this course, but if you’re interested you can
find much coverage on it on the Web

• Suffice it to say that FFT was a revolutionary discovery with great
impact on modern electronic technology and engineering
applications

CS 6212 Design and Analysis of Algorithms Divide & Conquer

39

	CS 6212 Design and Analysis of Algorithms��Lecture: Divide & Conquer – Part II
	Objectives of this Lecture
	Outline
	Divide & conquer�-- Template reminder --
	Divide & conquer�-- The Order Statistics Problem --
	The Order Statistics Problem�-- special cases --
	The Order Statistics Problem�-- time complexity considerations (1) --
	The Order Statistics Problem�-- time complexity considerations (2) --
	The Order Statistics Problem�-- A first D&C attempt --
	CYU
	Time complexity of Select
	Time complexity of Select�-- Worst-case time complexity --
	Time complexity of Select�-- average-case time complexity --
	The Order Statistics Problem�-- A second D&C attempt: Quickselect --
	Quickselect�-- wise_partition --
	Quickselect�-- wise_partition --
	Quickselect �-- Algorithm --
	Quickselect �-- time complexity analysis (1/9) --
	Quickselect �-- time complexity analysis (2/9) --
	Quickselect �-- time complexity analysis (3/9) --
	Quickselect �-- time complexity analysis (4/9) --
	Quickselect �-- time complexity analysis (5/9) --
	Quickselect �-- time complexity analysis (6/9) --
	Quickselect �-- time complexity analysis (7/9) --
	Quickselect �-- time complexity analysis (8/9) --
	Quickselect �-- time complexity analysis (9/9) --
	Divide and conquer recap
	A few other quick D&C Applications�-- Binary Search in a sorted array --
	A few other quick D&C Applications�-- Power 𝒙 𝒏 --
	A few other quick D&C Applications�-- Polynomial evaluation (1/3) --
	A few other quick D&C Applications�-- Polynomial evaluation (2/3) --
	A few other quick D&C Applications�-- Polynomial evaluation (3/3) --
	Any advantage to D&C when Simpler methods are as fast? (1/2)
	Any advantage to D&C when Simpler methods are as fast? (2/2)
	Another “killer” application of D&C�-- Discrete Fourier transform (1/5) --
	Another “killer” application of D&C�-- Discrete Fourier transform (2/5) --
	Another “killer” application of D&C�-- Discrete Fourier transform (3/5) --
	Another “killer” application of D&C�-- Discrete Fourier transform (4/5) --
	Another “killer” application of D&C�-- Discrete Fourier transform (5/5) --

